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Abstract-Fault-propagation folds and many detachment folds may be analyzed using a single geometric model. A 
modification of a previously published approach allows the interpreter to quantitatively predict thrust fault 
trajectory and displacement from the geometry of an associated fault-propagation/detachment anticline. Because 
geological and geophysical data typically constrain the mesoscopic and macroscopic forms of folds more 
completely and more accurately than they constrain faults, this technique offers a useful way to rapidly construct 
balanced structural cross-sections in detached fold-thrust systems. 0 1997 Elsevier Science Ltd. All rights reserved. 

INTRODUCTION 

Fault-propagation and detachment folding are two 
mechanisms commonly employed to explain and quanti- 
tatively analyze fold development in contractional 
terrains. Geometric models that describe and generalize 
these fold styles are important tools for constructing 
geological cross-sections that balance (Dahlstrom, 1969; 
Laubscher, 1977; Suppe, 1983; Jamison, 1987). Field 
observations, map relationships, well-data and seismic 
reflection surveys commonly constrain the geometries, 
sizes and locations of folds in fold-thrust belts more 
tightly than they indicate the trajectories, displacements 
and locations of associated faults. As a result, the process 
of constructing a subsurface structural interpretation 
often involves inferring the characteristics of faults from 
the geometries of associated folds (Mitra, 1992). 

The intent of this short paper is to further develop and 
illustrate the application of one particular published 
geometric model (Chester and Chester, 1990) that has 
significant utility for the prediction of subsurface fault 
characteristics when only folds may be confidently 
described. With the inclusion of an additional parameter 
describing the scale of a fold and reorganization of the 
equations that were presented in the original paper 
(Chester and Chester, 1990), it is possible to use surface 
fold observations to predict not only the dip and location 
of the associated blind thrust surface, but also the 
displacement on the fault surface required to generate 
the observed fold. These parameters provide important 
constraints for the generation of both prospect and 
regional-scale structural models in fold-thrust systems. 

The fold model is based on the assumptions of plane 
strain, and conservation of both layer-parallel line length 

(except in the anticlinal forelimb) and cross-sectional 
area. It also employs parallel, kink-style folding and fold- 
hinges that migrate with respect to material points within 
the units being deformed (i.e. constant limb-dip folding 
of Epard and Groshong, 1995). The model addressed 
here, initially developed to describe fault-propagation 
folding alone, has two distinct advantages over those that 
preceded it (e.g. Suppe and Medwedeff, 1984, 1990; 
Suppe, 1985; Mitra, 1990). Firstly, the displacement 
gradient in the vicinity of the propagating fault-tip is 
not required to affect all layers that have been cut by the 
fault ramp. Secondly, the anticlinal backlimb of the fold 
that is generated is not required to dip parallel to the 
underlying fault ramp. 

The second innovation implicitly generalizes both 
fault-propagation folds and a class of detachment folds 
into a single geometric model, although this apparently 
has not been appreciated previously. One can consider 
these ‘detachment’ folds to be developed above propa- 
gating fault ramps of very low dip. Consequently, the 
height of the associated fault ramp is typically less that 
the thickness of a stratigraphic unit on a regional-scale 
cross-section and the resulting geometries appear as 
detachment folds, namely anticlines in which neither the 
forelimb nor the backlimb parallel the associated fault 
ramp and which developed above the propagating tip of 
nearly bedding-parallel faults. The detachment fold 
model described by Dahlstrom (1990) may be considered 
an end-member of the model. The model described here, 
however, does not address detachment folds that require 
fold-limb rotation during development (e.g. Jamison, 
1987). We illustrate the application of this model with 
two examples of well-exposed macroscopic folds from the 
Sierra Madre Oriental of northeastern and east-central 
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Mexico, both of which can be considered detachment 
folds. 

MODEL GEOMETRY 

For a detailed description of the model geometry 
employed by Chester and Chester (1990), the reader is 
referred to the original article. Most importantly, one 
should be aware of the key differences between the 
Chester and Chester (1990) model and those that 
preceded it. Namely, the anticlinal backlimb dip is 
independent of the dip of the associated fault ramp and 
the displacement gradient related to folding need not 
affect the entire hanging wall ramp, only a portion of it 
(Fig. 1). The fold initiation point, P, marks the location at 
which displacement begins to decrease and the fault tip 
point, T, occurs where displacement reaches zero. Fault 
displacement is assumed to change linearly between these 
two points. 

In this analysis the fold parameters that must be 
known in order to characterize the dip of the associated 
fault surface are the backlimb dip measured relative to 
any regional inclination (28) the interlimb angle (y), and 
the thickness-change ratio of layering within the forelimb 
of the fold (@It). These parameters are related to the fault 
ramp dip relative to regional dip (~1) by equation (4) of 
Chester and Chester (1990). Because this equation does 
not express geometric relationships for a single variable, 
the usefulness of the equation is basically limited to 
determining whether a set of input parameters are 
internally consistent with the model geometry or not. In 
order to use this relationship more predictively, a little 
trigonometry is necessary. Solving the equation (see 
Appendix) for the ramp dip (a) yields: 

where 

(A + B)2 + 2Acot(28 + y) - (:)’ 

(1) 

A s tan/j _ _! tf 2 2 7 

K) 1 +1 coty +scy 
and 

1 tf2 
BE- 

2 t K) 1 -1 cot(2B + v). 

Importantly, equation (1) demonstrates the existence 
of a unique fault ramp dip corresponding to a locally 
balanced fault-propagation/detachment fold of a specific 
geometry. The relationship between ramp dip (a) and the 
angles defining the fold geometry is shown graphically in 
Fig. 2. The nomogram was calculated for the case where 
tf= t, such that no layer thickness changes occur within 
the forelimb of the fold. Figure 2 clearly shows that ramp 
dip depends most sensitively on fold interlimb angle. For 

Fig. 1. Geometry of fault-propagation/detachment fold model 
employed in the analysis (modified after Chester and Chester, 1990). 

example, with a constant backlimb dip of 30”, increasing 
the fold interlimb angle from 30 to 90” increases the 
associated ramp dip by about 30”. Conversely, for a fixed 
interlimb angle, variations in the backlimb dip of a fold 
correspond to only minor changes in ramp dip. Notice 
that for tight anticlines (0”1yi30”), the ramp dip will 
always be very low (cri - 10’) and the resulting geometry 
will essentially be that of a detachment fold. Such folds 
may vary from upright through highly vergent geome- 
tries with only minimal differences in ramp dip. In the 
extreme case of an isoclinal anticline, the ramp dip goes 
to zero and the resulting geometry is that of the 
detachment fold model of Dahlstrom (1990). 

Because the discussion above assumes tf= t, the 
sensitivity of ramp dip to the forelimb thickness-change 
ratio cannot be appreciated. Figure 3 shows that tight 
interlimb angles (and consequently low ramp dips) 
produce only minor ramp angle sensitivity to forelimb 
thickness-change ratio. Open interlimb angles result in 
significant sensitivity to forelimb thickness-change ratio, 
particularly for anticlines with large backlimb dips. In 
general, thickening of the forelimb tends to decrease the 
calculated ramp angle and thinning of the forelimb tends 
to increase the ramp angle. 

To more completely specify the fault surface for 
inclusion into a structural model or cross-section, the 
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Fig. 2. Nomogram of ramp dip (a) as a function of changing backlimb 
dip (20) and interlimb angle (y) assuming that trjt = 1. Curves follow the 
constant values of cI indicated. Stippled area of the graph corresponds to 
the various combinations of input parameters that cannot result in a 
meaningful value of a. In this field, the sum of 29 and y is greater than 

180”, and as such does not represent a sensible anticlinal geometry. 
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Fig. 3. Sensitivity of ramp dip (a) to forelimb thickness-change ratio 
(tr/t) for a range of backlimb dips (28) and interlimb angles (y). Thin 
curves correspond to y = 10”; medium curves correspond to y = 45”; bold 
curves correspond to y = 90”. Continuous curves correspond to tr/r = 1; 
dashed curves correspond to tf/t = 1.25; dash-dotted curves correspond 

to tr/t =0.8. 

fault displacement associated with folding must be 
understood. In order to quantitatively predict fault 
displacement using the observed fold geometry it is 
necessary to define two additional parameters, namely, 
the structural relief of the anticline measured othogonal 
to regional (h) and the fault-parallel distance between the 
fault tip and the fold initiation point (TP). The distance 
TP and the displacement on the fault surface (Jo) may be 
calculated (see Appendix) using the following equations: 

TP = hC csc(28 + y - a) (2) 

and 

f0 = hC -+o-csc(26’+y-ol) 1 (3) 

where 

c= 
csc(28 + v) 

f cscy + coty - cot(28 + y - (Y) . 

Figures 4 and 5 show nomograms of fault displacement 
and TP distance, respectively, in terms of the fold 
interlimb angle and backlimb dip. As with the previous 
discussion, these solutions are generated for the case 
where no thickness change occurs within the forelimb of 
the fold (tr= t). The fault displacement and TP distance 
values have been normalized to the structural relief of the 
anticline to remove the scale dependence of these 
calculations. It is clear that the normalized displacement 
and TP distance are sensitive to changes in both fold 
angles. For a given anticlinal structural relief, fault 
displacement increases with a decrease in backlimb dip 
and/or a decrease in interlimb angle. The TP distance 
systematically increases with increasing interlimb angle, 
but varies in a more complex fashion in terms of the 
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Fig. 4. Nomogram of normalized fault displacement vb/h) as a function 
of variations in backlimb dip (20) and interlimb angle (y) assuming that 
tr/t = 1. Curves follow the indicated values of normalized displacement, 
and may be multiplied by h for a specific anticline in order to calculate 
the true displacement,f,. Stippled area of the graph corresponds to the 
various combinations of input parameters that cannot result in a 

meaningful fold geometry. 

backlimb dip. Figures 6 and 7 show that normalized fault 
displacement and TP distance, respectively, have only 
minor sensitivity to forelimb thickness-change ratio 
except for anticlines having both open interlimb angles 
and steep backlimb dips. Forelimb thickening increases 
both calculated displacement and TP distance, and 
forelimb thinning decreases both displacement and TP 
distance, with the exception of forelimb thinning of folds 
with open interlimb angles. 

The final information needed to fully characterize the 
fault is its location. Recognizing that the Chester and 
Chester (1990) model geometry requires that the fault tip 
point, T, lies within the leading synclinal fold-hinge and 
that the fold initiation point, P, is located at the point 
where the anticlinal hinge intersects the fault, it is possible 
to construct the unique thrust-ramp that will satisfy the 
associated values of cI and TP. Independent knowledge of 
the detachment level, or depth projection of the trailing 
synclinal fold-hinge, constrains the location of the ramp- 
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Fig. 5. Nomogram of normalized distance between the fault tip and the 
fold initiation point (W/h) as a function of variations in backlimb dip 
(28) and interlimb angle (y) assuming that t&= 1. Curves follow the 
indicated values of normalized TP, and may be multiplied by h for a 
specific anticline in order to calculate the true TP. Stippled area of the 
graph corresponds to the various combinations of input parameters that 

cannot result in a meaningful fold geometry. 



246 R. MARRETT and P. A. BENTHAM 

O”‘.“““““““’ 
0" 30” 60” 90” 

backlimb dip 

Fig. 6. Sensitivity of normalized fault displacement (Jo/h) to forelimb 
thickness-change ratio (tr/t) for a range of backlimb dips (20) and 
interlimb angles (y). Thin curves correspond to y = IO”; medium curves 
correspond to y = 45”; bold curves correspond to y = 90”. Continuous 
curves correspond to tr/r = 1; dashed curves correspond to tr/t = 1.25; 

dash-dotted curves correspond to tr/t = 0.8. 

flat inflection in the fault trajectory. The distance from 
the ramp-flat inflection to the fold initiation point must 
be greater than or equal to the amount of displacement 

on the fault. 

APPLICATIONS 

The first example is drawn from a regional transect 
crossing numerous folds in the Monterrey Salient area of 
the Sierra Madre Oriental, northeastern Mexico. In this 
region, Laramide-age deformation affected a predomi- 
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Fig. 7. Sensitivity of normalized distance between the fault tip and the 
fold initiation point (W/h) to forelimb thickness-change ratio (tr/r) for a 
range of backlimb dips (219) and interlimb angles (y). Thin curves 
correspond to y = IO”; medium curves correspond to y = 45”; bold curves 
correspond to y = 90”. Continuous curves correspond to tr/t = I; dashed 
curves correspond to rr/t= 1.25; dash-dotted curves correspond to 

zr/t = 0.8. 

nantly carbonate section of upper Jurassic through upper 
Cretaceous strata over a detachment within upper 

Jurassic gypsum/anhydrite evaporates of the Olvido 
Formation (e.g. Padilla y Sanchez, 1985). Evaporites 
crop out locally in the cores of anticlines, and represent 
the oldest exposed rocks in the Monterrey Salient. 
Surface maps and field studies were used to construct 
the geometry of a large anticline, which has a tight 
interlimb angle and verges towards the northeast (Fig. 8). 
The fold model parameters are a backlimb dip (20) of 49” 
and an interlimb angle (y) of 25”. A structural relief above 
regional (h) of 3.0 km was estimated by projection of fold 

closure from out of the plane of the cross-section. Using 
equations (l)-(3) these data are consistent with a thrust 
ramp dip (c() of 7” and a TP distance of 0.8 km. A 
shortening of 5.1 km is predicted by the model. Using 
these calculations together with surface control of bed- 
ding dips, formational contacts and thicknesses, it is 
possible to complete the cross-section within the zone of 
detachment (Fig. 8). 

The second example occurs to the south, in the eastern 
Sierra Madre Oriental fold-belt adjacent to the Veracruz 
Basin of east-central Mexico (Mossman and Viniegra, 
1976). Here, a sequence of Cretaceous limestones are 
folded above a detachment (or series of shallowly- 
dipping thrust faults) within the Middle Cretaceous 
Orizaba Formation, which contains interbedded evapo- 
rates. A structural transect across one of these folds is 
shown in the upper portion of Fig. 9. Downward 
projection of surface dip control suggests that this fold 
verges towards the east, and has a steep to locally- 
overturned eastern limb. The primary fold parameters 
derived from detailed field work are a backlimb dip (20) 
of 67”, an interlimb angle (y) of 19” and a structural relief 
above regional (h) of 1.7 km. These input data result in a 
predicted fault ramp dip of 5”, a TP distance of 0.29 km, 
and fault displacement of 2.7 km. This information was 
used to complete the cross-section and to project the 
thrust fault down-dip into its detachment (Fig. 9). 

DISCUSSION AND CONCLUSIONS 

The thrust trajectory, displacement and location of a 
fault can be uniquely determined from the form of an 
associated fault-propagation/detachment fold in a fold- 
thrust belt. While this model is able to rapidly predict a 
balanced fold-thrust relationship based on the present- 
day fold geometry, it does not claim to treat the kinematic 
development of such a system (Epard and Groshong, 
1995; Homza and Wallace, 1995). The model employs 
constant limb-dip folding with migrating fold hinges that 
may not be kinematically consistent with other field 
observations. As such, the utility of this approach lies 
largely on its ability to use fold form to quantitatively 
predict associated faults at depth when little or no 
subsurface information is available. 
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Fig. 8. Example application of the geometric model to a large surface anticline from northeastern Mexico. The section shown 
is part of a longer, regional-scale cross-section across the Sierra Madre Oriental. 
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Fig. 9. Example application of the geometric model to a large surface anticline from east-central Mexico. The upper portion 
of the figure shows the local surface control as it constrains the axial portion of the fold. The lower part of the diagram shows 

part of a longer, regional cross-section across the fold of interest. 
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APPENDIX 

Equation (1) is derived from equation (4) 
(1990): 

of Chester and Chester 

com + 2tanB - coty - 2;cscy + (:)*[cot(28 + y - o) - coty] = 0. 

(Al) 

into (Al), multiplying all terms of the resulting equation by the 
denominator of the identity, and simplifying we get: 

cot*ol+ cotcu[2A + 2B] + 
[ 

(;)*-2Acot(ZB + y)] = 0, (A3) 

where A and Bare as defined in the text. The quadratic solution to (A3) 
yields meaningful results only for the positive root, as used in equation 

(1). 
Equation (2) derives from a restatement of equation (Al 6) of Chester 

and Chester (I 990) as: 

TP = tfcsc(20 + y - u). (44) 

S 

Fig. Al. Diagram defining the lengths and angles of triangles used to 
relate anticlinal structural relief to fault displacement and TP distance 

(modified after Chester and Chester, 1990). 

In Fig. Al we see that the structural relief of the anticline (h) can be 
expressed in terms of the layer-parallel length of the forelimb (ST): 

h = STsin(20 + y). (A5) 

and STcan in turn be written in terms of tf: 
ST = ST’ - TT’ = tf[coty2 - cot(28 + y - a)]. (A6) 

Substituting equation (A9) of Chester and Chester (1990) 

; + cosy 
coty* = ~ 

siny ’ (A7) 

into (A6) yields: 

ST = tf ;csc, + coty - cot(26’f y - (Y) 1 WI 
Finally, combining (A5) and (A8) yields tr= hC, where C is as defined in 
the text, and substituting this result into (A4) yields equation (2). 

Equation (3) derives from equation (A16) of Chester and Chester 
(1990), expressed in terms of fault displacement cf,): 

fu = & - TP. (A9) 

Using (A4) from above: 

TP 

Substituting (AlO) and equation (2) into (A9) yields equation (3) 

(A101 

Substituting the trigonometric identity 

cot(20 + y - 4 = 
cotcu cot(2Q + y) + 1 
cota - cot(20 + y) 

(A2) 


